

Regional Water Planning Group Meeting

etexwaterplan.org

January 10, 2024

East Texas Regional Water Planning Group Meeting

- 1. Call to Order
- 2. Invocation & Pledge of Allegiance
- 3. Notice of Meeting
- 4. Roll Call/Determination of Quorum
- 5. Public Comments

Item 6

Consideration and Approval of the minutes of the October 04,2023 meeting

Item 7 Reports from the City of Nacogdoches

Item 8 Reports of Adjoining Regions' Activity

Region C – David Montagne Region D – John McFarland Region H – Scott Hall

Item 9 Reports from Standing Committees

Executive Committee – John Martin

Finance Committee – Kelley Holcomb

Bylaws Committee – David Alders

Technical Committee – Scott Hall

Nominations Committee – Monty Shank

Item 10

Consideration and Approval of updates to the Bylaws

Item 11 Report from Consultant Team

Today's Discussion

Overview of Project Schedule

- a) TWDB Adoption Revision to Population and Demand Projection
- b) Progress on Surface Water Supply Projection
- c) Progress on Groundwater Supply Projection
- d) Progress on Draft Water Needs and Demand Allocations
- e) Conservation and Reuse Methodology
- f) Status Update on Infeasible Water Strategies
- g) Status Updates on the Hydrological Variance Request for Surface Water Supplies
- h) Next Meeting/Agenda

Schedule

Texas Water 🦳

Sixth Cycle of Regional Water Planning (2026 Regional Water Plans) Working Schedule (as of March 2023)^A

wora	ang Sche	dule (as of March 2023) ^A		_								_									_									_								_			Dev	_	omer	it Bo	oard		_						Y:					
Item	Entity	Activity	Planning SOW			_	20	021		_	-		_	_		202	2	_	_	_	-	_	-		20	23		_	_		/		_	2024		_	-	_		-	_	2	2025		_			1			1				4			
	,		Task #	lan Tah	Mar	Apr	May	3	Sep	G	Nov	lan	ę.	Mar	Arv	'n	Aug	Sep	ť	Nov	uer	£	Mar	May	ung	3	Aug	ij	NON	ian Izn	feb	Mar	Way	5 2	Bue	des	Nov	Dec	lan	Mar	Apr	May hun	i a	Aug	Sec.	Nov	Dec	1	\mathbf{v}	5		1					YZ	5
\checkmark	TWDB	RFA for regional water planning grant posted and applications due	NA			A	pplicati	ions due	4/12/2	021																																								5								Ě
\checkmark	TWDB/RWPG	Initial planning contract execution deadline	NA						Cont	racts e	execution	ed by 8	/31/20	21																																												
\checkmark	TWDB/RWPG	Anticipated additional contracting activities	NA																																															1	-						F	
s/	TWDB	Regional Water Planning rules update	NA																																																1			. (\sim		
5	TWDB	TWDB/BEG Mining study	2A																																															ŰĬ	(4	7		1	ľ	5		
6	RWPG	RWPGs hold pre-planning & coordination meeting (before technical work begins)	10																																																							
\checkmark	TWDB	Municipal WUG list, GPCD, historical population, and water use released	2B																																																							
\$	RWPG	Review municipal WUG list, GPCD, historical population, and water use; provide feedback to TWDB	2B				Τ															Π											\square																									
3	TWDB	Draft Livestock, Manufacturing, and Steam Electric Power demand projections released	ZA				Τ										T					Π												Τ	Π			Π							Τ													
10	TWDB	Draft Irrigation and Mining projections released	2A																			Π											\square																									
11	TWDB	Draft Population and Municipal demand projections released	2B	П	Π	П	Т	П	Т	Т	Т	Г		Т	Γ	Π	Т		Π			П	Т	Т	Γ		Τ	Γ		Т	П		П		П		Т	Π	Τ	П	Π	Т	П		Т	Π	Π											
12	RWPG	Review draft projections and finalize adjustments with TWDB staff	2A, 2B																														П		Π			Π	Τ	П					Τ													
13	RWPG	Revision requests for draft non-municipal demands due	2A	Π		Π	Т		Т	Т	Т	Γ		Т	Γ	Π	Т		Π		Γ	П	Т	Т	Γ	f	evision	n requi	ests for	di ftn	on-mun	nicip I d	lemand	s due 7,	/14/20	23	Т	Π	Τ	П	Π	Т	Π		Т	Π	Π											
14	RWPG	Revision requests for draft population and municipal demands due	2B											Τ		Π						П		Τ	Γ	Π	Rev	vision	request	tst ridr	aft pop	ulat in	and mu	unicipal	dema	nds du	e 8/11/	2023		П					Τ													
15	TWDB	TWDB Board adopts projections	2A, 2B	Π		П			Т	Τ	Τ	Г		Т	Γ	Π	Т		Π		Γ	П	Т	Т	Γ					Т					Π		Τ	Π	Τ	Π		Т			Т	Π	Π											
15	TWDB	DB27 prepared for data entry ^{R.C}	NA																														Π		П			Π		П					Τ													
*1	TWDB/RWPG	DB27 individualized training for consultants	NA			П			Γ	Τ	Τ	Γ		Τ	Γ	Π	Т		Π		Γ	П	Т	Т	Τ			Γ		Т			П				Τ	Π	Τ	П		Т	П		Т		Π											
18	TWDB	Updated MAGs released	3																		Γ	П		Τ	Γ										Π			Π	Τ	П					Τ													
19	RWPG	Evaluate water availability and existing water supplies	3	\square	Π	П	Τ		Т	Τ		Г		Τ	Γ	Π								T						Т			П	Τ	П		Т	Π	Τ	П		Т	Π		Т	Π												
20	RWPG	Identify water needs	4A											Τ		Π	Т				Γ	П		T									П		Π			Π		Π		T	П		Τ													
21	RWPG	Identify infeasible WMSs in the 2021 RWPs	4B			П			Π			Γ				Π	Τ				Γ	П		Т									П		Π		Τ	Π		Π			П		Τ	\square												
22	RWPG	Technical Memo due	4C	П	П	Π	Т	П	Т	Т	Т	Г		Т	Γ	Π	Т		Π		Γ	П	Т	Т	Γ		Τ			Т		d	hnical N	vierno d	ue 3/4	/2024	Т	Π	Τ	П	Π	Т	П		Т	Π	Π											1
23	RWPG	Amendments to 2021 RWPs to remove/revise infeasible WMSs	4B			\square	Τ				Τ	П		Τ	Γ	Π	Τ	Π	\square		Τ	Π	Τ	Τ				Τ				1			Π			Π		Π		Τ	Π		Τ	\square	Π											
24	RWPG	RWPG adopted amendments to 2021 RWPs to remove/revise infeasible WMSs due to TWDB	4B				Τ				Τ	Π				Π	Τ				Τ	Π	T	Τ								1		202	1 RWP	amen	dments	s for in	feasibl	e WMS	is due f	6/5/20	24		Τ	\square	\square											
25	RWPG	Identify potentially feasible WMSs	5A		Π	\square	Τ		Π			Π		Τ		Π	╈		Π		Τ	Ħ		Τ	Γ													Π					Π		╈	\square	Π											
26	TWDB/RWPG	Review and negotiate SOW submittals for WMS evaluations and issue notice-to-proceeds ⁰	5B			\square	Τ	\square		\square		Π		Τ		Π	Τ		Π		Τ	Π		Τ	Γ							T	Π		Π			Π		\square	Π		Π		Τ	\square	Π											
27	IPC	Interregional Planning Council report due to the TWDB	NA		\top	\square	\top			\square		Π				Π			\square		Τ	Ħ	╈	T								c	Report	due 3/4	/2024			Π		\square	\square	╈	Π		╈	\uparrow	Π											
28	RWPG	Initially Prepared Plan due	10		Π	П	Τ	$ \uparrow$	П	\square	T	П		T	Τ	Π	T	Π	Π		Τ	\square	T	Τ	T		T	Τ		Т			Π		Π		T	Π	╈		IPP du	Je 3/3/	2025		T	\uparrow	Π											
29	TWDB	Socioeconomic Impact Report released to RWPGs	6		\top	\square	T	$ \uparrow$			╈	Π		╈		Π	╈	Π	\square		Τ	Ħ	╈	T			╈			Т	$ \uparrow$	1	Ħ	╈	Π			Π	\top		Т		П		╈	\uparrow	Π											
30	RWPG	Final Plan due	10		\top	\square	Τ	$ \uparrow$	\top	\square	╈	Π	\square	T	T	Π	╈	Π	Π	\top	Τ	Ħ	╈	T	T		T	T		Т	$ \uparrow$	1	Π	╈	Π		Τ	Π	╈	\uparrow	R	RWP du	ie 10/2	0/2025	5		Π											
		e based on currently available agency resources and subject to c ted, online water planning database for the 2027 State Water Pla		-		-			•							-										•							-																									1

^C Anticipated database availability dates are estimates based on currently available agency resources

^D Subject to available funding

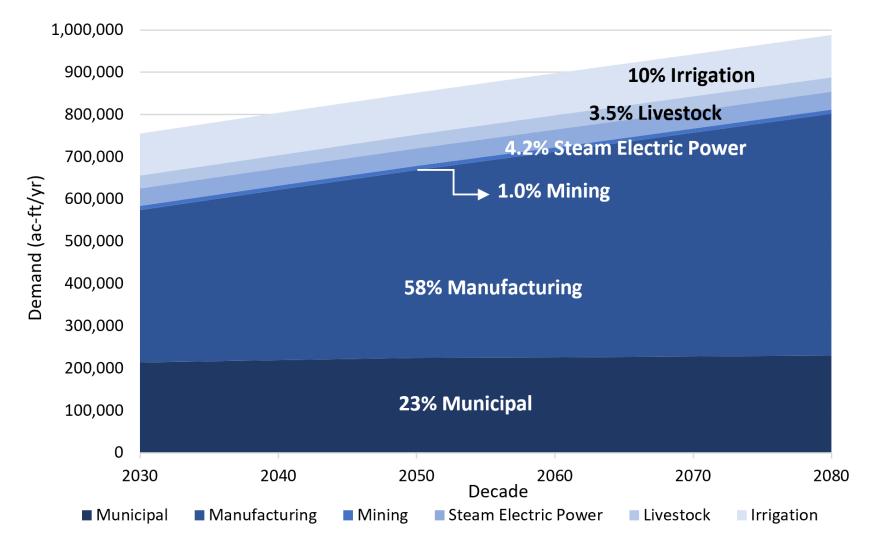
https://www.twdb.texas.gov/waterplanning/rwp/planningdocu/2026/documents.asp

2026 Plan Short-Term Schedule

Date	Schedules Events/Tasks
Oct 2023 – March 2024	Prepare the technical memorandum
Feb 15, 2024	Next RWPG Meeting
March 4, 2024	Technical memorandum due date
March 4, 2024	Interregional Planning Council Report due date
Jan – June 2024	TWDB Board adopts identified WMSs and WMSPs as infeasible (Amendments due 6/5/2024)

WMSs = Water Management Strategies WMSPs = Water Management Strategy Projects

TWDB Adopted Revisions to Population and Demand Projection (11a)


12

2026 Demand Projections Finalized

- TWDB adopted final projections on November 9, 2023
- Proposed demand is accepted
- Minor adjustments to ensure consistency with neighboring regions, and the following specific case:
 - Mauriceville SUD TWDB agreed to proposed 2030 growth rate, recommended lower growth rates from 2040-2080 due to expected regional population declines

Demand Projection by Category

Adopted Demand in ETRWPA

Water Use Category	2030	2040	2050	2060	2070	2080	Comparison to Previous Cycle (a)
Municipal	214,040	219,630	224,789	226,176	227,792	229,673	-6%
Manufacturing	360,181	402,032	444,136	486,507	529,147	572,071	50%
Mining	9,673	9,759	9,847	9,952	10,062	10,179	-17%
Steam Electric Power	41,782	41,782	41,782	41,782	41,782	41,782	-38%
Livestock	30,001	31,116	32,434	33,979	34,460	34,460	-47%
Irrigation	99,429	99,429	99,429	99,429	99,429	99,429	1%
Total for ETRWPA (b)	755,106	803,748	852,417	897,825	942,672	987,594	12%

Note: (a) Comparison reflects the difference between the 2070 Demand in the 2026 RWP and the 2070 Demand in the 2021 RWP.

(b) Total may not sum due to rounding.

Abbreviations:

ETRWPA = East Texas Regional Water Planning Area

ltem 11a

 Update on the TWDB Adopted Revisions to the Population and Demand Projection in the 2026 Regional Water Plan (2026 RWP)

Surface Water Supply Projection (11b)

Surface Water Supplies in Regional Water Planning

Assess regional surface water availability

Distribute availability by county/WUG/WWP

Abbreviations:

WUG = water user group WWP = wholesale water provider

Surface Water Rights in Texas

Prior Appropriation

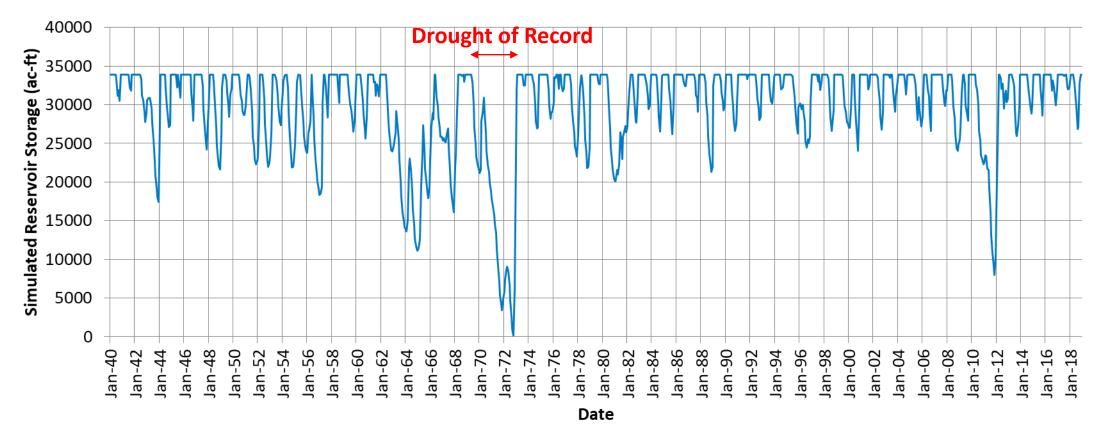
- Water is a resource of the State, based solely on permit provisions
- "First in time is first in right"
- Rights assigned a priority date
 - "Seniors" vs "Juniors"

 Administered by Texas Commission on Environmental Quality (TCEQ)

Surface Water Availability Evaluation

- Determined using modified TCEQ Water Availability Model (WAM) Run 3
 - Existing permanent rights and e-flow requirements
 - Priority order
 - No return flows
 - Full authorized diversions
- Modifications made according to hydrologic variance request
 - Approved by RWPG at 10/2023 meeting
 - Reflect current and future reservoir conditions (i.e., sedimentation)

Surface Water Availability


Reservoirs

- Determined using firm yield
 - Maximum water volume a reservoir can reliably provide each year under a repeat of the drought of record
- Account for sedimentation
- Evaluated individually
- Listed by reservoir or system

Surface Water Availability Firm Yield Example

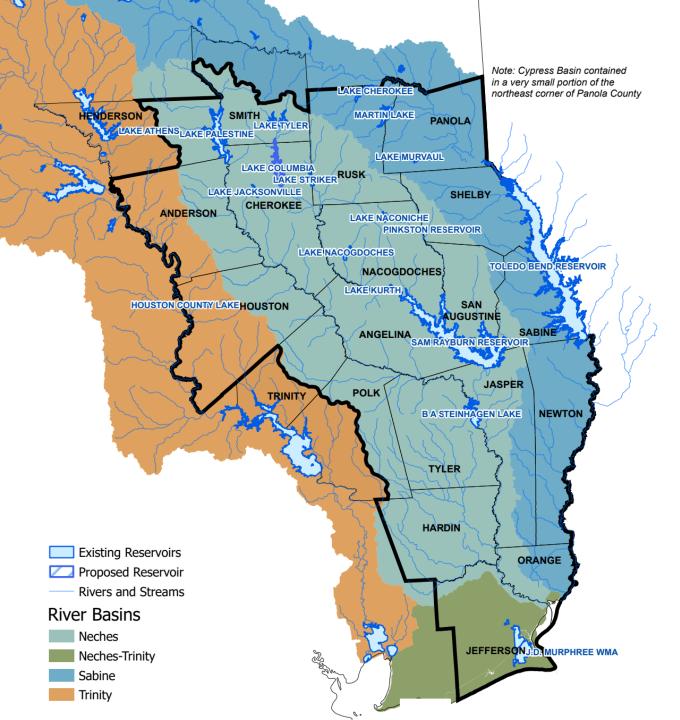
Firm yield: How much can you take out every year such that available reservoir storage never goes empty during a repeat of the worst historical drought?

2022 State Water Plan. Texas Water Development Board. https://www.twdb.texas.gov/waterplanning/swp/2022/docs/SWP22-Water-For-Texas.pdf

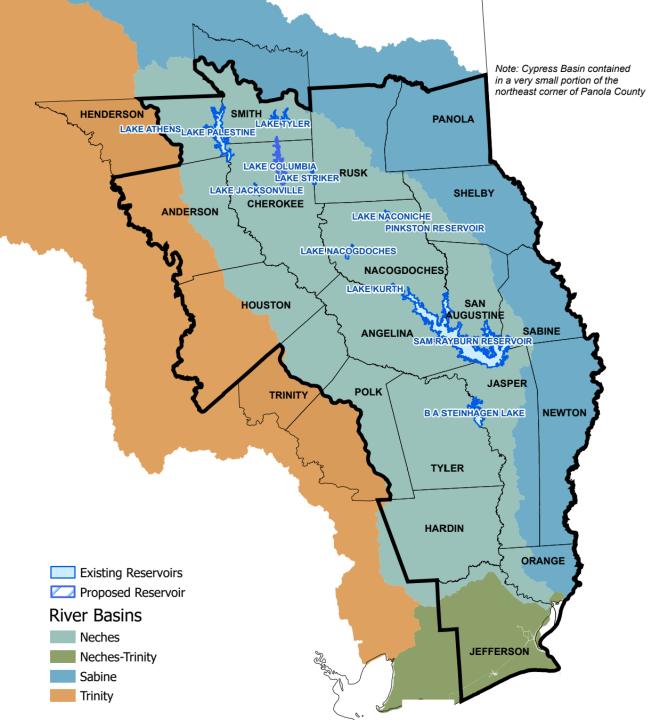
Surface Water Availability

Run-of-River

- Determined using minimum annual diversion
- Aggregated by county and river basin
 - Individual municipal rights
 - Irrigation rights > 10,000 acrefeet per year (af/y)


Surface Water Availability

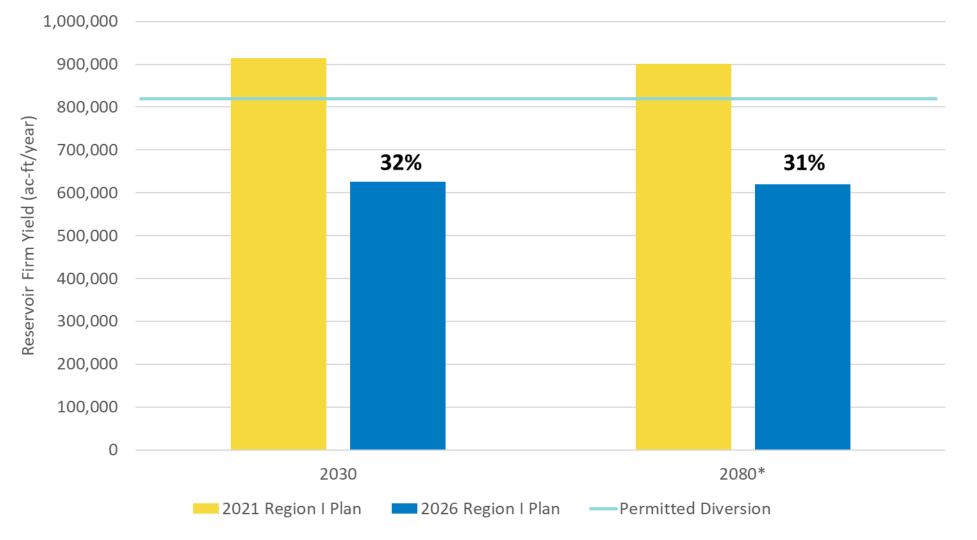
Local Supplies


- Determined using **TWDB** historical use data
- Non-permitted supply (e.g., stock tanks, mining gravel pits)
- Listed by county and river basin

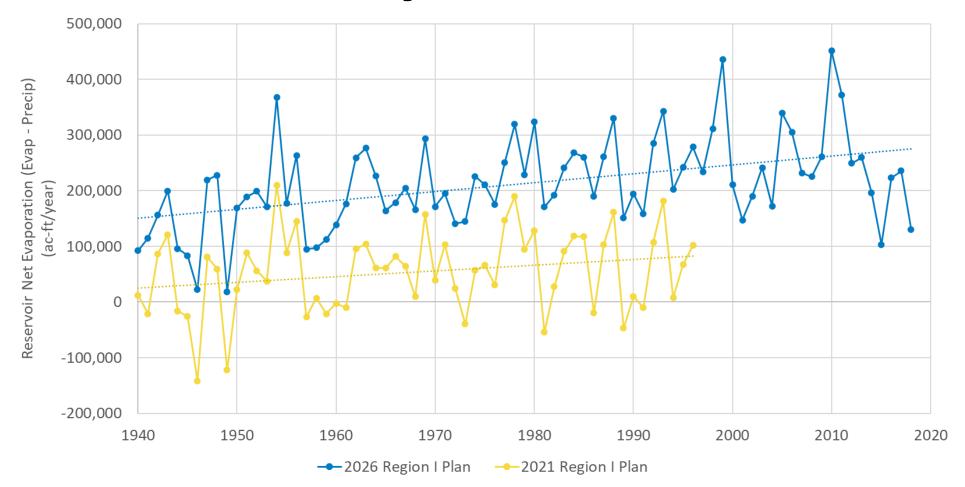
Major Surface Water Sources in Region I

Major Reservoirs Neches River Basin

Surface Water Availability Evaluation Neches River Basin


- Neches WAM Run 3 updated in 2021
 - Used for 2026 Region I Plan
 - Hydrology data (inflows, evaporation) extended through 2018
 - Extension includes major droughts not in original
- 2021 Region I Plan used original version of Neches WAM Run 3
 - Hydrology data (inflows, evaporation) available through 1996

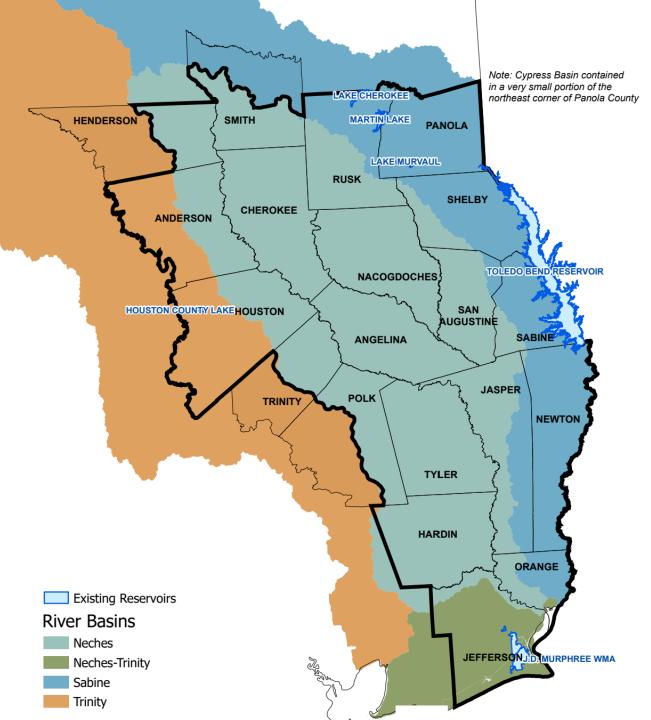
Reservoir Water Availability Neches River Basin


	Permitted	Projected Yield (ac-ft/yr)										
Neches Basin Reservoirs	Diversion	2021	Plan	2026 Plan								
	(ac-ft/yr)	2030	2070	2030	2080							
Lake Athens	8,500	5,864	5,520	4,540	4,240							
Lake Columbia	85,507	75,720	75,400	68,187	68,187							
Lake Jacksonville	6,200	8,495	7,560	7,560	6,485							
Lake Kurth	19,100	18,502	18,510	17,425	17,540							
Lake Nacogdoches	22,000	15,800	14,200	14,335	12,525							
Lake Palestine	238,110	196,110	189,010	177,110	166,910							
Lake Pinkston	3,800	3,800	3,800	3,800	3,800							
Lake Rayburn/Steinhagen	820,000	913,610	901,080	625,190	619,351							
Lake Striker	20,600	19,635	14,690	10,500	7,950							
Lake Tyler	40,325	34,666	34,010	32,900	31,750							
Lakes Timpson, Bellwood, Rusk, & San Augustine	3,995	4,647	4,647	4,114	4,114							
Neches River Basin Total		1,296,849	1,268,427	966,324	943,164							
Total Neches River Basin Reservoir Yield Percent Reduction-26%-26%												

Yield Reduction Lakes Rayburn/Steinhagen

^{*2070} yield shown for 2021 Plan.

Increased Reservoir Net Evaporation Sam Rayburn Reservoir


Reductions in reservoir yield primarily driven by *increases in reservoir net evaporation* in the updated Neches WAM

Run-of River Water Availability Neches River Basin

		Projected Yi	eld (ac-ft/yr)						
County	2021	Plan	2026 Plan						
	2030	2070	2030	2080					
Anderson	162	162	80	80					
Angelina	45	45	10	10					
Cherokee	108	108	58	58					
Hardin	57	57	54	54					
Houston	208	208	147	147					
Jasper ¹	382,554	382,554	382,512	382,512					
Jefferson ²	16,732	21,588	12,102	12,969					
Nacogdoches	69	69	82	82					
Rusk	82	82	59	59					
Sabine	178	178	162	162					
Smith	50	50	45	45					
Tyler	89	89	88	88					
TOTAL	400,335	405,191	395,414	396,281					

1 Lower Neches Valley Authority (LNVA) run-of-river firm diversions included under Jasper County.

2 Beaumont run-of-river firm diversions estimated using Beaumont daily model.

Major Reservoirs Sabine, Trinity, and Neches-Trinity River Basins

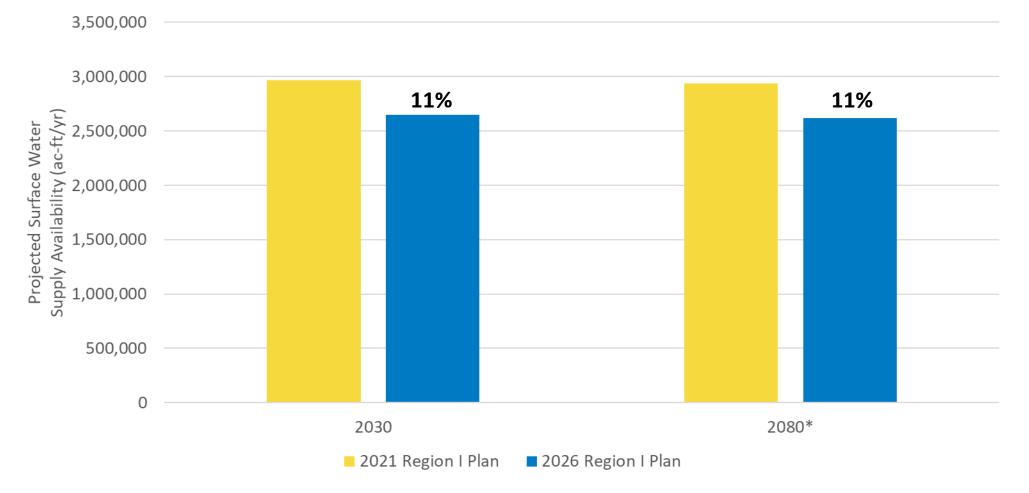
Reservoir Water Availability Sabine and Trinity River Basins

	Permitted	Projected Yield (ac-ft/yr)										
Sabine Basin Reservoirs	Diversion	2021	Plan	2026 Plan								
	(ac-ft/yr)	2030	2070	2030	2080							
Lake Cherokee	62,400	31,309	31,100	31,480	30,200							
Lake Martin	25,000	31,480	31,371	32,210	31,850							
Lake Murvaul	22,400	22,865	17,282	20,845	16,935							
Lake Toledo Bend	970,067	959,398	958,450	969,750	968,420							
Lake Center	1,460	1,460	1,460	1,460	1,460							
Sabine River Basin Total		1,044,225	1,039,693	1,055,700	1,048,810							
	Permitted	Projected Yield (ac-ft/yr)										
Trinity Basin Reservoirs	Diversion	2021	Plan	2026	Plan							
	(ac-ft/yr)	2030	2070	2030	2080							
Houston County Lake*	3,500	3,500	3,500	3,500	3,500							
Trinity River Basin Total		3,500	3,500	3,500	3,500							

*Supply estimate still in progress by Region C

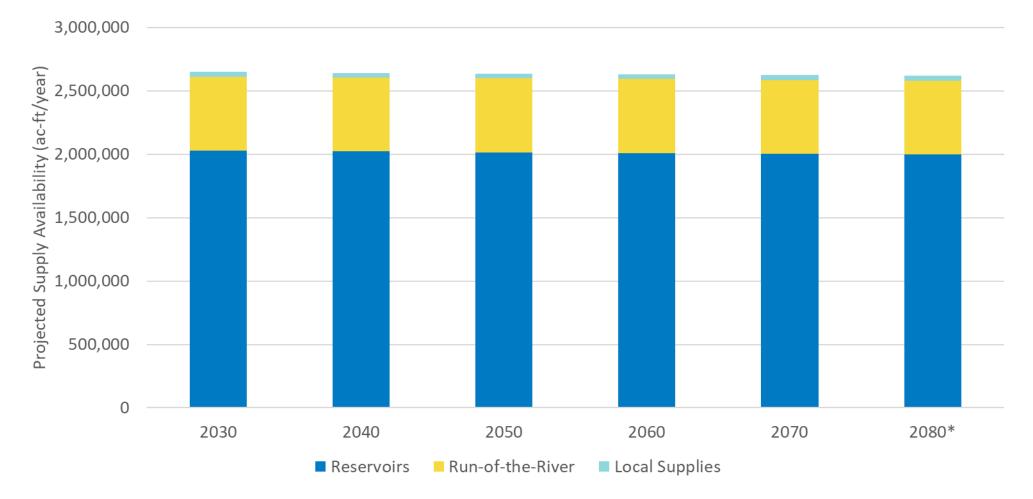
Run-of-River Water Availability Sabine, Neches-Trinity, and Trinity River Basins

River Basin	County	2030-2080 Projected Yield (ac-ft/yr)							
		2021 Plan	2026 Plan						
	Newton	133,128	130,146						
	Orange	28	28						
Sabine	Panola	687	580						
	Polk	137	137						
	Total	133,981	130,892						
	Anderson	1,290	1,290						
Trinity	Houston	2,522	2,522						
	Total	3,812	3,812						
Nachas Tripity	Jefferson	51,274	51,274						
Neches-Trinity	Total	51,274	51,274						



Local Supply Availability

County	Availa	Projected ability t/yr)	County	2030-2080 Projected Availability (ac-ft/yr)					
	2021 Plan	2026 Plan		2021 Plan	2026 Plan				
Anderson	1,017	1,275	Orange	276	98				
Angelina	661	997	Panola	1,254	2,596				
Cherokee	1,574	1,694	Polk	416	147				
Hardin	155	184	Rusk	2,346	1,415				
Henderson	770	632	Sabine	705	201				
Houston	1,790	1,791	San Augustine	536	1,835				
Jasper	547	646	Shelby	3,332	10,269				
Jefferson	1,910	800	Smith	605	313				
Nacogdoches	2,880	8,913	Trinity	449	233				
Newton	313	157	Tyler	247	239				
			Regional Total	21,783	34,435				


2026 Region I Plan availability updated to reflect <u>maximum historical livestock surface water</u> <u>use reported by county from 2010-2020</u> not accounted for in surface water rights or sales from water right holders (i.e., permitted water)

Projected Surface Water Supplies Regional Total

*2070 availability shown for 2021 Plan.

Projected Surface Water Supplies Regional Total

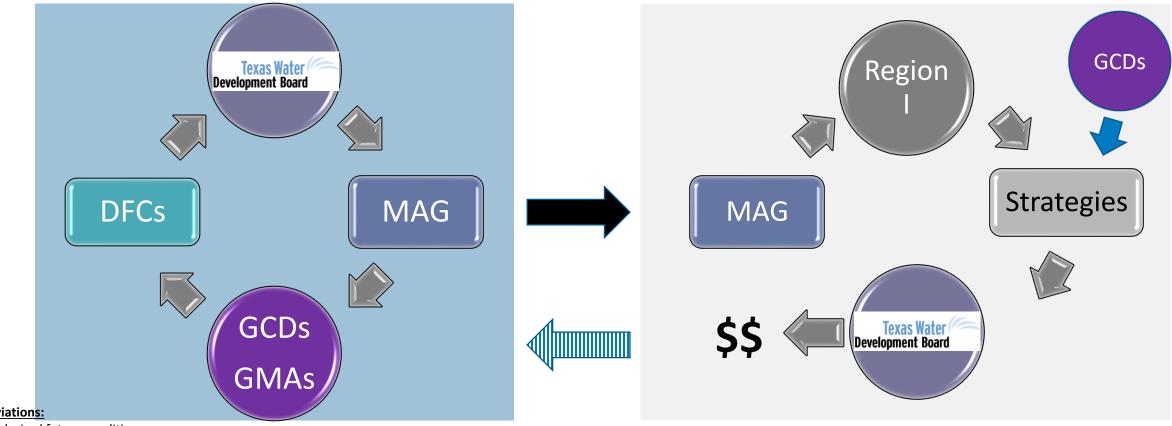
1,121 acre-feet per year \approx 1 million gallons per day (MGD)

Item 11b

 Discussion of Updates on Surface Water Supply Projection

Groundwater Availability Projection (11c)

Outline


- Review and compare current groundwater availability to previous round
- Total groundwater availability = MAG availability + Non-MAG availability

The Groundwater Planning Cycle

Joint Groundwater Planning

Regional Water Planning

Abbreviations:

DFCs = desired future conditions

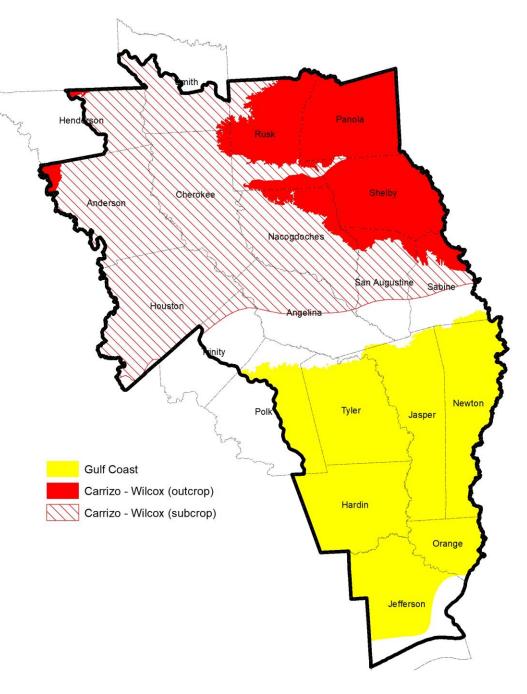
GCDs = groundwater conservation district

GMAs = groundwater management areas

MAG = modeled available groundwater

Groundwater Availability

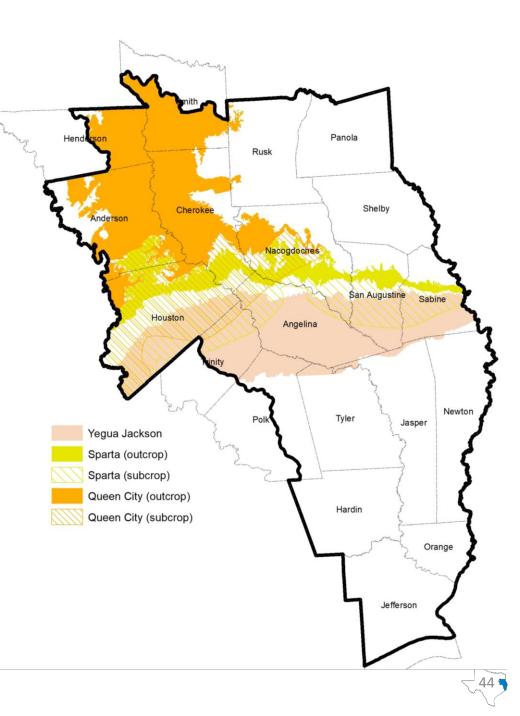
- Groundwater produced from 2 major and 3 minor aquifers, plus several "other" aquifers
- Groundwater availability in Region I is ~500,000 acft/yr
- Comprised of "MAG" and "Non-MAG" availability
 - "MAG" = Modeled Available Groundwater
 - MAGs are determined by the TWDB based on desired future conditions (DFCs) adopted in the joint groundwater planning process (GMAs)
 - MAG = Availability
 - Availability cannot be adjusted except by using a "MAG Peak Factor"
 - Non-MAG availability are established by the TWDB but not based on the joint groundwater planning process
 - Non-MAG availability can be adjusted at the request of the RWPG


Major Aquifers

<u>Gulf Coast</u>

- Present in southern portion of Region I
- Significant availability

Carrizo-Wilcox


- Present in northern portion of Region I
- Significant availability

Minor Aquifers

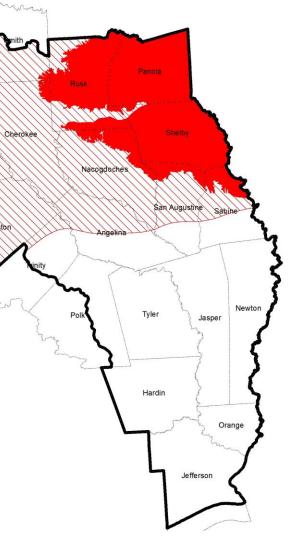
- <u>Sparta</u>- Present in the central portion of Region I; limited availability
- <u>Queen City</u>- Present in the northwest portion of Region I; low availability

<u>Yegua-Jackson</u>- Present in the central portion of Region I; limited availability except in a few counties

Notes on Availability

- Groundwater availability has been combined by county and basin
- Aquifer availability is mostly consistent through the planning period
- If availability varies over the planning period, it may be shown like "5,000 to 4,000", reflecting the availability from the beginning to end of the planning period
- Total availability is comprised of "MAG" plus "Non-MAG" availability
 - "MAG" = Modeled Available Groundwater
 - Non-MAG availability are established by the TWDB but not based on the joint groundwater planning process
 - 2022 availability for 2020 to 2070; 2027 availability for 2030 to 2080
 - "NA" for 2022 availability means there was no availability during the last planning cycle

Gulf Coast Aquifer


					2022 Total	2027 Total	Difference in
Aquifer	Name	County	Basin	Туре	Availability (ac-ft/yr)	Availability (ac-ft/yr)	Availability (ac-ft/yr)
					[2020-2070]	[2030-2080]	[2030-2070]
Gulf Co	oast	Sabine	Sabine	Non-MAG	NA	0	0
Gulf Co	oast	Hardin	Neches	MAG	34,789	37,571	2,782
Gulf Co	oast	Hardin	Trinity	MAG	138	150	12
Gulf Co	oast	Jasper	Neches	MAG	37,630	40,821	3,191
Gulf Co	oast	Jasper	Sabine	MAG	29,854	32,544	2,690
Gulf Co	oast	Newton	Sabine	MAG	34,043	37,309	3,266
Gulf Co	oast	Polk	Neches	MAG	14,897	16,765	1,868
Gulf Co	oast	Tyler	Neches	MAG	38,211	34,390	-3,821
Gulf Co	oast	Polk	Neches	Non-MAG	1,060	1,060	0
Gulf Co	oast	Jefferson	Neches	MAG	803	1,853	1,050
Gulf Co	oast	Jefferson	Neches-Trinity	MAG	1,722	13,571	11,849
Gulf Co	oast	Orange	Neches	MAG	3,287	6,266	2,979
Gulf Co	oast	Orange	Neches-Trinity	MAG	256	280	24
Gulf Co	oast	Orange	Sabine	MAG	15,821	18,659	2,838
Gulf Co	oast	Newton	Neches	MAG	176	199	23
		TOTAL			212,687	241,438	28,751

Anderson

Carrizo-Wilcox Aquifer

Aquifer Name	County	Basin	Туре	2022 Total Availability (ac-ft/yr) [2020-2070]	2027 Total Availability (ac-ft/yr) [2030-2080]	Difference in Availability (ac-ft/yr) [2030-2070]
Carrizo-Wilcox Aquifer	Anderson	Neches	MAG	23,335	21,958	-1,377
Carrizo-Wilcox Aquifer	Anderson	Trinity	MAG	5,753	5,066	-687
Carrizo-Wilcox Aquifer	Angelina	Neches	MAG	27,591	27,611	20
Carrizo-Wilcox Aquifer	Cherokee	Neches	MAG	20,933 to 20,470	15,241	-5,692 to -5,229
Carrizo-Wilcox Aquifer	Henderson	Neches	MAG	6,036	3,996	-2,040 🗸
Carrizo-Wilcox Aquifer	Houston	Neches	MAG	22,488	1,721	-20,767
Carrizo-Wilcox Aquifer	Houston	Trinity	MAG	3,806	634	-3,172
Carrizo-Wilcox Aquifer	Nacogdoches	Neches	MAG	24,181	20,859	-3,322
Carrizo-Wilcox Aquifer	Panola	Cypress	MAG	6	0	-6
Carrizo-Wilcox Aquifer	Panola	Sabine	MAG	8,370 to 8,062	4,999	-3,213 to -3,063
Carrizo-Wilcox Aquifer	Rusk	Neches	MAG	11,769 to 11,750	7,111	-4,658 to -4,639
Carrizo-Wilcox Aquifer	Rusk	Sabine	MAG	9,068	6,907	-2,161
Carrizo-Wilcox Aquifer	Sabine	Neches	MAG	356	356	0
Carrizo-Wilcox Aquifer	Sabine	Sabine	MAG	3,249	1,032	-2,217
Carrizo-Wilcox Aquifer	San Augustine	Neches	MAG	1,149	303	-846
Carrizo-Wilcox Aquifer	San Augustine	Sabine	MAG	290	284	-6
Carrizo-Wilcox Aquifer	Shelby	Neches	MAG	2,577 to 2,018	2,621	333 to 603
Carrizo-Wilcox Aquifer	Shelby	Sabine	MAG	8,317 to 7,081	3,698	-4,456 to 3,383
Carrizo-Wilcox Aquifer	Smith	Neches	MAG	22,705	17,607	-5,098 to -5,086
Carrizo-Wilcox Aquifer	Trinity	Neches	MAG	269	266	-3
	TOTAL			202,248 to 199,651	142,270	-59,368 to -57,381

Aquifer Name	County	Basin	Туре	-	2027 Total Availability (ac-ft/yr) [2030-2080]	Difference in Availability (ac-ft/yr) [2030-2070]
Sparta Aquifer	Anderson	Neches	MAG	344	109	-235
Sparta Aquifer	Anderson	Trinity	MAG	272	198	-74
Sparta Aquifer	Angelina	Neches	MAG	371	390	19
Sparta Aquifer	Cherokee	Neches	MAG	359	352	-7
Sparta Aquifer	Houston	Neches	MAG	477	505	28
Sparta Aquifer	Houston	Trinity	MAG	977	977	0
Sparta Aquifer	Nacogdoches	Neches	MAG	365	362	-3
Sparta Aquifer	Rusk	Neches	MAG	NA	0	0
Sparta Aquifer	Sabine	Neches	MAG	37	36	-1
	Sabine	Sabine	MAG	160	13	-147
	San Augustine	Neches	MAG	163	163	0
Sparta Aguifer	San Augustine	Sabine	MAG	3	3	0
Sparta Aquifer	Shelby	Sabine	MAG	NA	0	0
	Smith	Neches	MAG	NA	0	0
	Trinity	Neches	MAG	154	152	-2
	TOTAL			3,682	3,260	-422

Panola

Shelby

Ruck

Nacogdoches

Cherokee

Anderson

Queen City Aquifer

Aquifer Name	County	Basin	Туре	2022 Total Availability (ac-ft/yr) [2020-2070]	2027 Total Availability (ac-ft/yr) [2030-2080]	Difference in Availability (ac-ft/yr) [2030-2070]
Queen City Aquifer	Anderson	Neches	MAG	11,828	11,489 to 11,488	-339 to -340
Queen City Aquifer	Anderson	Trinity	MAG	7,274	5,102	-2,172
Queen City Aquifer	Angelina	Neches	MAG	1,093	1,095	2
Queen City Aquifer	Cherokee	Neches	MAG	23,211 to 22,866	8,812	-14,399 to -14,054
Queen City Aquifer	Henderson	Neches	MAG	12,067	10,516	-1,551
Queen City Aquifer	Houston	Neches	MAG	2,043	2,080	37
Queen City Aquifer	Houston	Trinity	MAG	258	216	-42
Queen City Aquifer	Nacogdoches	Neches	MAG	2,985	2,946	-39
Queen City Aquifer	Rusk	Neches	MAG	40	39	-1
Queen City Aquifer	Rusk	Sabine	MAG	18	20	2
Queen City Aquifer	Sabine	Neches	MAG	NA	0	0
Queen City Aquifer	Sabine	Sabine	MAG	NA	0	0
Queen City Aquifer	San Augustine	Neches	MAG	NA	0	0
Queen City Aquifer	Shelby	Sabine	MAG	NA	0	0
Queen City Aquifer	Smith	Neches	MAG	30,692	20,121	-10,571
Queen City Aquifer	Trinity	Neches	MAG	0	0	0
	TOTAL			91,509 to 91,164	62,436 to 62,435	-29,073 to -28,729

Panola

Yegua-Jackson Aquifer

Aquifer Name	County	Basin	Туре	2022 Total Availability (ac-ft/yr) [2020-2070]	-	Difference in Availability (ac-ft/yr) [2030-2070]
Yegua-Jackson Aquifer	Angelina	Neches	Non-MAG	16,890 to 16,507	16,890 to 16,507	0
Yegua-Jackson Aquifer	Houston	Neches	Non-MAG	1,324	1,324	0
Yegua-Jackson Aquifer	Houston	Trinity	Non-MAG	4,061	4,061	0
Yegua-Jackson Aquifer	Jasper	Neches	Non-MAG	NA	0	0
Yegua-Jackson Aquifer	Nacogdoches	Neches	Non-MAG	235	235	0
Yegua-Jackson Aquifer	Newton	Neches	Non-MAG	NA	0	0
Yegua-Jackson Aquifer	Newton	Sabine	Non-MAG	NA	0	0
Yegua-Jackson Aquifer	Polk	Neches	Non-MAG	570	570	0
Yegua-Jackson Aquifer	Sabine	Neches	Non-MAG	3,724	3,724	0
Yegua-Jackson Aquifer	Sabine	Sabine	Non-MAG	575	575	0
Yegua-Jackson Aquifer	San Augustine	Neches	Non-MAG	2,102	2,102	0
Yegua-Jackson Aquifer	San Augustine	Sabine	Non-MAG	9	9	0
Yegua-Jackson Aquifer	Trinity	Neches	Non-MAG	700	700	0
Yegua-Jackson Aquifer	Tyler	Neches	Non-MAG	NA	0	0
	TOTAL			30,190 to 29,807	30,190 to 29,807	0

Nacogdoches San Augustine Sabine Angelina Jik Tyler Jasper Newton Hardin Orange Jefferson

Panola

Shelby

Rusk

Cherokee

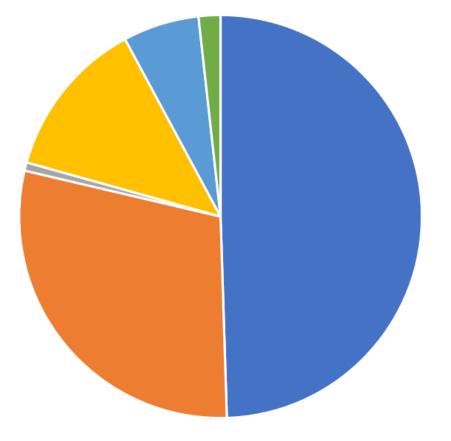
Anderson

Other Aquifers

 Not official aquifers per the TWDB, none of which are defined

Aquifer Name	County	Basin	Туре	2022 Total Availability (ac-ft/yr) [2020-2070]	2027 Total Availability (ac-ft/yr) [2030-2080]	Difference in Availability (ac-ft/yr) [2030-2070]
Other Aquifer	Anderson	Trinity	Non-MAG	298	298	0
Other Aquifer	Angelina	Neches	Non-MAG	812	812	0
Other Aquifer	Cherokee	Neches	Non-MAG	268	268	0
Other Aquifer	Henderson	Neches	Non-MAG	5	5	0
Other Aquifer	Henderson	Trinity	Non-MAG	680	680	0
Other Aquifer	Houston	Neches	Non-MAG	378	378	0
Other Aquifer	Houston	Trinity	Non-MAG	888	888	0
Other Aquifer	Nacogdoches	Neches	Non-MAG	1,131	1,131	0
Other Aquifer	Rusk	Neches	Non-MAG	270	270	0
Other Aquifer	Rusk	Sabine	Non-MAG	469	469	0
Other Aquifer	Sabine	Sabine	Non-MAG	336	336	0
Other Aquifer	San Augustine	Neches	Non-MAG	1,395	1,395	0
Other Aquifer	Smith	Neches	Non-MAG	922	922	0
Other Aquifer	Trinity	Neches	Non-MAG	700	700	0
	TOTAL			8,552	8,552	0

Groundwater Availability (by decade)


A muifer	Total Availability					
Aquifer	in 2030 (ac-ft/yr)	in 2040 (ac-ft/yr)	in 2050 (ac-ft/yr)	in 2060 (ac-ft/yr)	in 2070 (ac-ft/yr)	in 2080 (ac-ft/yr)
MAJOR AQUIFERS						
Gulf Coast	241,438	241,438	241,438	241,438	241,438	241,438
Carrizo-Wilcox	142,270	142,270	142,270	142,270	142,270	142,270
Total Major Aquifer Availability	383,708	383,708	383,708	383,708	383,708	383,708
MINOR AQUIFERS						
Sparta	3,260	3,260	3,260	3,260	3,260	3,260
Queen City	62,436	62,436	62,435	62,435	62,435	62,435
Yegua-Jackson	30,190	30,190	30,190	30,190	29,807	29,807
Other Aquifers	8,552	8,552	8,552	8,552	8,552	8,552
Total Minor Aquifer Availability	104,438	104,438	104,437	104,437	104,054	104,054
TOTAL GROUNDWATER AVAILABILITY	488,146	488,146	488,145	488,145	487,762	487,762

Changes in Groundwater Availability (by decade)

Aquifer	Change in Availability in 2030 (ac-ft/yr)	Change in Availability in 2040 (ac-ft/yr)	Change in Availability in 2050 (ac-ft/yr)	Change in Availability in 2060 (ac-ft/yr)	Change in Availability in 2070 (ac-ft/yr)
MAJOR AQUIFERS					
Gulf Coast	28,751	28,751	28,751	28,751	28,751
Carrizo-Wilcox	-59,368	-59,231	-58,630	-58,044	-57,381
Total Major Aquifer Availability	-30,617	-30,480	-29,879	-29,293	-28,630
MINOR AQUIFERS					
Sparta	-422	-422	-422	-422	-422
Queen City	-29,073	-29,073	-29,074	-28,902	-28,729
Yegua-Jackson	0	0	0	0	0
Other Aquifers	0	0	0	0	0
Total Minor Aquifer Availability	-29,495	-29,495	-29,496	-29,324	-29,151
TOTAL GROUNDWATER AVAILABILITY	-60,112	-59,975	-59,375	-58,617	-57,781

Summary of Groundwater Availability

Aquifer	Total Availability in 2030 (ac-ft/yr)	Total Availability in 2080 (ac-ft/yr)
MAJOR AQUIFERS		
Gulf Coast	241,438	241,438
Carrizo-Wilcox	142,270	142,270
Total Major Aquifer Availability	383,708	383,708
MINOR AQUIFERS		
Sparta	3,260	3,260
Queen City	62,436	62,435
Yegua-Jackson	30,190	29,807
Other Aquifers	8,552	8,552
Total Minor Aquifer Availability	101,178	100,794
TOTAL GROUNDWATER AVAILABILITY	484,886	484,502

Gulf Coast Carrizo-Wilcox Sparta Queen City Yegua-Jackson Other Aquifers

Groundwater Availability Decreases

- Availabilities (MAG or non-MAG) have decreased in at least one county in four of six aquifers:
 - Gulf Coast
 - Carrizo-Wilcox
 - Queen City
 - Sparta

Groundwater Availability Issues

- Reviewed water management strategies (WMS) and assigned supplies from last planning cycle; review focused on decreases in availability
- For all non-MAG availabilities we also reviewed historic pumping

Decrease in MAG Availabilities

				20	30		2070			
Aquifer Name	County	Basin	2022 MAG	2027 MAG	MAG Availability	Percent Change	2022 MAG	2027 MAG	MAG Availability	Percent Change
			Availability	Availability	Difference	MAG Availability	Availability	Availability	Difference	MAG Availability
Carrizo-Wilcox	Anderson	Neches	23,335	21,958	(1,377)	-5.90%	23,335	21,958	(1,377)	-5.90%
Carrizo-Wilcox	Anderson	Trinity	5,753	5,066	(687)	-11.94%	5,753	5,066	(687)	-11.94%
Carrizo-Wilcox	Cherokee	Neches	20,933	15,241	(5,692)	-27.19%	20,470	15,241	(5,229)	-25.54%
Carrizo-Wilcox	Henderson	Neches	6,036	3,996	(2,040)	-33.80%	6,036	3,996	(2,040)	-33.80%
Carrizo-Wilcox	Houston	Neches	22,488	1,721	(20,767)	-92.35%	22,488	1,721	(20,767)	-92.35%
Carrizo-Wilcox	Houston	Trinity	3,806	634	(3,172)	-83.34%	3,806	634	(3,172)	-83.34%
Carrizo-Wilcox	Nacogdoches	Neches	24,181	20,859	(3,322)	-13.74%	24,181	20,859	(3,322)	-13.74%
Carrizo-Wilcox	Panola	Cypress	6	0	(6)	-100.00%	6	0	(6)	-100.00%
Carrizo-Wilcox	Panola	Sabine	8,212	4,999	(3,213)	-39.13%	8,062	4,999	(3,063)	-37.99%
Carrizo-Wilcox	Rusk	Neches	11,769	7,111	(4,658)	-39.58%	11,750	7,111	(4,639)	-39.48%
Carrizo-Wilcox	Rusk	Sabine	9,068	6,907	(2,161)	-23.83%	9,068	6,907	(2,161)	-23.83%
Carrizo-Wilcox	Sabine	Sabine	3,249	1,032	(2,217)	-68.24%	3,249	1,032	(2,217)	-68.24%
Carrizo-Wilcox	San Augustine	Neches	1,149	303	(846)	-73.63%	1,149	303	(846)	-73.63%
Carrizo-Wilcox	San Augustine	Sabine	290	284	(6)	-2.07%	290	284	(6)	-2.07%
Carrizo-Wilcox	Shelby	Sabine	8,154	3,698	(4,456)	-54.65%	7,081	3,698	(3,383)	-47.78%
Carrizo-Wilcox	Smith	Neches	22,705	17,607	(5,098)	-22.45%	22,693	17,607	(5,086)	-22.41%
Carrizo-Wilcox	Trinity	Neches	269	266	(3)	-1.12%	269	266	(3)	-1.12%
Gulf Coast	Tyler	Neches	38,211	34,390	(3,821)	-10.00%	38,211	34,390	(3,821)	-10.00%
Queen City	Anderson	Neches	11,828	11,489	(339)	-2.87%	11,828	11,488	(340)	-2.87%
Queen City	Anderson	Trinity	7,274	5,102	(2,172)	-29.86%	7,274	5,102	(2,172)	-29.86%
Queen City	Cherokee	Neches	23,211	8,812	(14,399)	-62.04%	22,866	8,812	(14,054)	-61.46%
Queen City	Henderson	Neches	12,067	10,516	(1,551)	-12.85%	12,067	10,516	(1,551)	-12.85%
Queen City	Houston	Trinity	258	216	(42)	-16.28%	258	216	(42)	-16.28%
Queen City	Nacogdoches	Neches	2,985	2,946	(39)	-1.31%	2,985	2,946	(39)	-1.31%
Queen City	Rusk	Neches	40	39	(1)	-2.50%	40	39	(1)	-2.50%
Queen City	Smith	Neches	30,692	20,121	(10,571)	-34.44%	30,692	20,121	(10,571)	-34.44%
· · · ·										
Sparta	Anderson	Neches	344	109	(235)	-68.31%	344	109	(235)	-68.31%
Sparta	Anderson	Trinity	272	198	(74)	-27.21%	272	198	(74)	-27.21%
Sparta	Cherokee	Neches	359	352	(7)	-1.95%	359	352	(7)	-1.95%
Sparta	Nacogdoches	Neches	365	362	(3)	-0.82%	365	362	(3)	-0.82%
Sparta	Sabine	Neches	37	36	(1)	-2.70%	37	36	(1)	-2.70%
Sparta	Sabine	Sabine	160	13	(147)	-91.88%	160	13	(147)	-91.88%
Sparta	Trinity	Neches	154	152	(2)	-1.30%	154	152	(2)	-1.30%

MAG Availability Issues

Carrizo-Wilcox

- Virtually all counties had decreases in availability, some significant
- Henderson, Houston, Panola, Rusk, San Augustine, Shelby, and Smith counties now have MAGs less than 2021 assigned supplies
- Houston County- MAG decreased from 3,806 to 634 ac-ft/yr; Houston County WCID#1 WMS for 3,500 ac-ft/yr
- Rusk County- MAG decreased from 11,750 to 7,111 ac-ft/yr; 3 strategies for 5,722 to 4,967 ac-ft/yr (problem when considering assigned supplies)

Queen City

- Some significant decreases in availability
- None that appear to impact 2021 assigned supplies or strategies

Sparta

- Some significant decreases in availability (either in volume or percentage)
- Anderson County now has MAG less than 2021 assigned supplies

Potential Solutions to MAG Declines

- Few options to update MAG availabilities
- MAG Peak Factor- Most decreases may be too much for a MAG Peak Factor to accommodate both the 2021 assigned supplies and the 2021 strategies

Non-MAG Availability Issues

- No decreases in non-MAG availability
- One recommended change to non-MAG availability
 - Yegua-Jackson Aquifer in Jasper County-
 - ✓ Current non-MAG availability is zero
 - ✓ 310-407 ac-ft/yr of municipal pumping from 2013 to 2020 (last year of available data)
 - ✓ Rookeland FWSD; Rayburn Country MUD
 - ✓ Recommend at least 500 ac-ft/yr availability

Miscellaneous Groundwater Issues

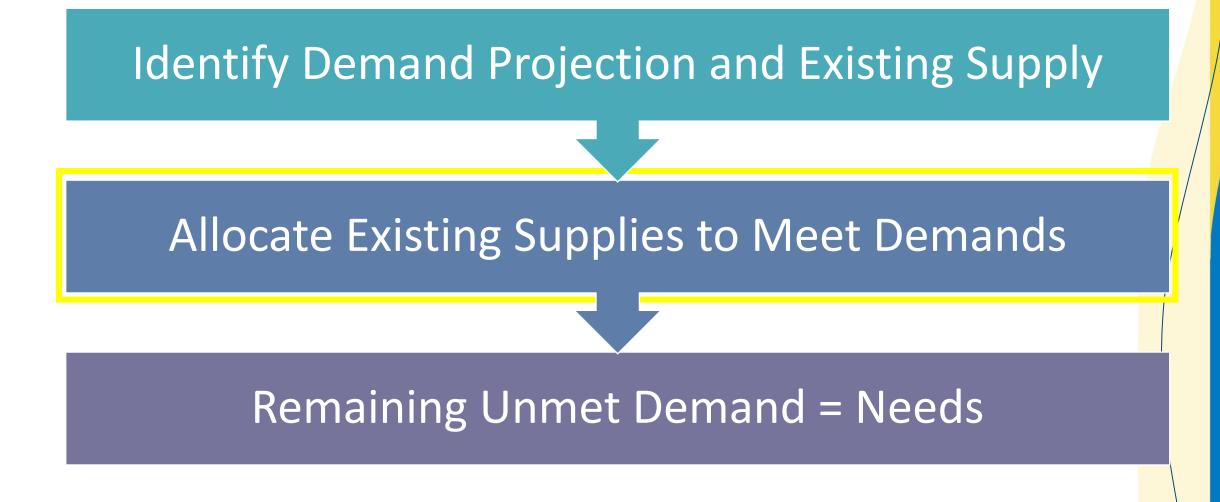
- Reviewing methodology used in the last round of planning
- Allocation of supplies when availability decreases (in some areas, significantly decrease)- weight decreases based on WUG type?? Equal reductions across all WUGs??

Item 11c

 Discussion of Updates on Groundwater Supply Projection

Water Needs and Demand Allocation (11d)

Basic Water Planning Definitions


Demand – The volume of water required to meet the anticipated domestic, public, and/or economic activities of a WUG during drought conditions.

Existing Supply – The maximum amount of water that is physically and legally accessible for immediate use by an WUG under a repeat of drought-of-record conditions.

Need – A potential water supply shortage, based on the difference between water demands and existing water supplies and/or recommended water management strategies.

Process Diagram

Development of Needs

Item 11d

 Discussion of Draft Water Needs and Updates on Demand Allocations

Conservation and Reuse Methodology (11e)

Task 5C Scope: Conservation Recommendations

- Evaluate WUGs' water conservation plans (WCPs) and Model WCPs to inform WMSs
- Explain non-recommendation of conservation WMSs, if applicable
- Determine highest practicable water conservation levels
- NEW: Set drought-based gallon per capita per day (GPCD) goals for municipal WUGs
- NEW: Develop separate water loss mitigation WMS

Review Recommendations in 2021 Plan

- For municipal conservation
 - Enhanced Public and School Education
 - Water Conservation Pricing
 - Enhanced Water Loss Control Program
- For non-municipal conservation
 - Considered for Irrigation Demand
 - Information and education program
 - Meter repair and replacement program
 - ✓Water billing based on water usage
 - Canal water loss reduction
 - Neches River saltwater barrier

Current Reuse Activity in East Texas

- Water reuse was not for municipal use last cycle, but it is this cycle.
- As of March 2022, the City of Beaumont is considering the recharge of treated water into a spreading basin.

	2020 F	Reuse Activit	y by County	(AFY)
County	Municipal Reuse	Mfg Reuse	Mining Reuse & Brackish	Total
ANGELINA	0	42	2	44
CHEROKEE	6	0	1	7
HENDERSON	20	0	0	20
JASPER	0	0	1	1
JEFFERSON	702	1,153	0	1,855
NACOGDOCHES	0	0	27	27
PANOLA	0	0	315	315
RUSK	0	0	26	26
SAN AUGUSTINE	0	0	106	106
SHELBY	0	0	31	31
SMITH	0	37	0	37
Total	728	1,232	509	2,469
Abbreviations:				

AFY = acre-feet per year

Mfg = manufacturing

Sources: Texas Water Development Board water use survey.

Approach to Reuse for 2026 Plan

- Review of current reuse practices in Region I, along with exploring existing opportunities.
- Identification of both direct and indirect strategies for the reuse of treated wastewater in Region I.
 - Potential collaboration with Major Water Providers.

ltem 11e

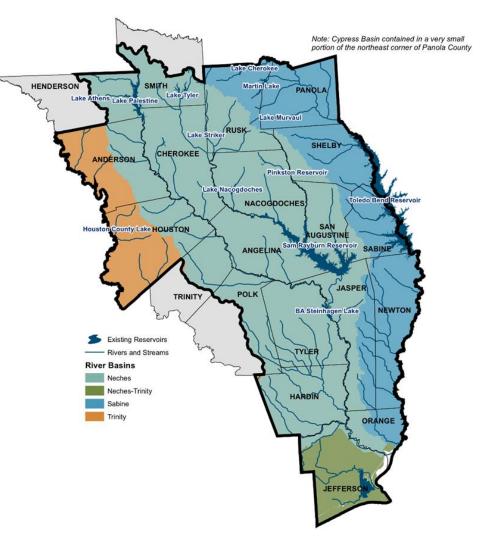
Discussion of Conservation and Reuse Methodology

Infeasible Water Strategies (11f)

ltem 11f –

Update on Infeasible Water Strategies

- No change since last meeting
- No infeasible water strategies have been identified in the 2021 RWP


Task 5B Notice to Proceed

 Approved by TWDB for initial strategies presented at October meeting

Hydrological Variance Request (11g)

Surface Water in Regional Water Planning

- TWDB requires the use of the TCEQ WAM Run 3 (Full Appropriation)
 - Assumes first in right is first in time
 - All water rights are fully used
- To make adjustments, need to request a hydrologic variance from the TWDB

Consulting Team Recommended Hydrologic Variances

- Neches-Trinity Coastal Basin
 - Adopt the current WAM run by TCEQ
- Trinity Basin
 - Adopt updated Trinity WAM run by Region C
- Sabine Basin
 - Adopt updated Sabine WAM run by Region I
- Neches Basin
 - Adopt updated Neches WAM run by Region I

Item 11g

 Status Update on the Hydrological Variance Request for Surface Water Supplies

Item 12 Reports from other state agencies

- a) Texas Water Development Board Lann Bookout
- b) Texas Department of Parks & Wildlife Stephen Lange
- c) Texas Department of Agriculture Manual Martinez
- d) Texas Soil and Water Conservation Board Trey Watson
- e) Groundwater Management Areas 11 and 14 John Martin/John McFarland

Item 13

General Discussion

Item 14

Next Meeting

February 15, 2024 at 10 am

- 14-day notice, 7-day materials posting
- Approval of Technical Memorandum (due March 4, 2024)

Next Meeting in February

Approval of Technical Memorandum (due March 4, 2024)

Technical Memorandum (due 3/4/24)

- 1. TWDB DB27 data reports
- 2. Process used to identify potentially feasible WMSs
- 3. List of potentially feasible WMSs to date
- 4. Any hydrologic variance requests to date
- 5. Methodology for calculating the anticipated sedimentation rate and revising the area-capacity rating curve
- 6. Table of details of hydrologic models used
- 7. Documentation of methodologies for groundwater availabilities to date
- 8. Region's interregional coordination efforts to date
- 9. List of infeasible WMSs and WMSPs from the region's 2021 RWP
- **10**. Electronic model files used in determining water availability

Questions?

Brigit Buff, PE bbuff@plummer.com 972.533.2499

